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I. Background 
The current debate over systematicity concerns the formal conditions a scheme of 
mental representation must satisfy in order to explain the systematicity of thought.1 The 
systematicity of thought is assumed to be a pervasive property of minds, and can be 
characterized (roughly) as follows: anyone who can think T can think systematic variants 
of T, where the systematic variants of T are found by permuting T’s constituents. So, for 
example, it is an alleged fact that anyone who can think the thought that John loves 
Mary can think the thought that Mary loves John, where the latter thought is a systematic 
variant of the former. 

The systematicity of thought itself, of course, cannot be directly observed. But it is easy 
to see why it is widely assumed. Anyone who can understand a sentence S can 
understand its systematic variants. Since understanding S requires having the thought it 
expresses, it follows that anyone who can think the thought expressed by a sentence S 

                                                 
1 The debate was instigated by Jerry Fodor and Zenon W. Pylyshyn 1988. Connectionism and 
cognitive architecture. Cognition 28:3-71. In the present article, we mainly focus on that paper 
and on Fodor and Brian P. McLaughlin. 1990. Connectionism and the problem of systematicity: 
Why Smolensky’s solution doesn’t work. Cognition 35:183-205 (1990) and Paul Smolensky, 
Géraldine Legendre and Yoshiro Miyata. 1992. Principles for an integrated connectionist/symbolic 
theory of higher cognition. Tech. Report 92-08. Institute of Cognitive Science. University of 
Colorado.. See footnote 2 for other papers detailing Fodor’s position and footnote 6 for papers 
detailing Smolensky’s. Other important participants in the debate were: Kenneth Aizawa 1997. 
Explaining systematicity. Mind and Language 12:115-36; Keith Butler 1991. Towards a 
connectionist cognitive architecture. Mind and Language 6:252-72; Keith Butler, 1995. 
Compositionality in cognitive models: The real issue. Philosophical Studies 78:153-62; David J. 
Chalmers 1993. Connectionism and compositionality: Why Fodor and Pylyshyn were wrong. 
Philosophical Psychology 6:305-319; Nick Chater and Mike Oaksford 1990. Autonomy, 
implementation and cognitive architecture: A reply to Fodor and Pylyshyn. Cognition 34:93-107; 
Robert Cummins 1996. Systematicity. The Journal of Philosophy 93:591-614; Robert F. Hadley 
1994a. Systematicity in connectionist language learning. Mind and Language 9:247-72; Robert F. 
Hadley Systematicity revisited. Mind and Language 9:431-44; Robert F. Hadley and Michael B. 
Hayward 1997. Strong semantic systematicity from Hebbian connectionist learning. Minds and 
Machines 7:1-55; Robert F. Hadley 1997. Cognition, systematicity, and nomic necessity. Mind 
and Language 12:137-53; Terence Horgan and John Tienson 1991. Structured representations in 
connectionist systems? In Steven Davis (ed.) Connectionism: Theory and Practice. New York: 
Oxford, pp.195-228; Robert J. Matthews 1994. Three-concept monte: Explanation, 
implementation, and systematicity. Synthese 101:347-63; Robert J. Matthews, 1997. Can 
connectionists explain systematicity? Mind and Language 12:154-77; Lars F. Niklassonand Tim 
van Gelder. 1994. On being systematically connectionist. Mind and Language 9:288-302; Tim van 
Gelder 1990. Compositionality: A connectionist variation on a classical theme. Cognitive Science 
14:355-84. 
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can have the thought expressed by the systematic variants of S. The systematicity of all 
thought expressible in language seems to follow: If you can understand 'John loves 
Mary', you must be capable of the thought that John loves Mary. Since anyone who can 
understand 'John loves Mary' can understand 'Mary loves John', it follows that anyone 
who can have the thought that John loves Mary can have the thought that Mary loves 
John. 

We get the expression for the thought you must have to understand the systematic 
variants of 'John loves Mary' by permuting the words in 'John loves Mary' (while 
maintaining grammaticality), and prefacing the result with 'that'. This leads to what we 
might call the “orthodox” position defended by Fodor, Pylyshyn and McLaughlin 
(hereafter FPM2) concerning the explanation of systematicity, namely that it is best 
understood as involving two parts. 

(1) The Representational Theory of Thought: having the thought that p is having a p-
expressing mental representation in a certain cognitive role. 

For example, having a belief that p amounts to having a mental representation that p in 
the belief box.3 

(2) Mental representation is “classical”: mental representation has a language-like 
combinatorial syntax and associated semantics.4 

Putting these two parts together, we get that anyone who can think that John loves Mary 
can think that Mary loves John, since (i) thinking Mary loves John involves tokening a 
representation of the proposition that Mary loves John, and (ii) that representation has 
constituents corresponding to Mary, John the relation of loving, which can simply be 
permuted to yield a representation, and hence a thought, corresponding to the 
proposition that John loves Mary. FPM are thus led to conclude that the human system 
of mental representation must be “classical,” i.e., a language-like scheme having the 
familiar kind of combinatorial syntax and associated semantics first introduced by 
Tarski.5 

An unfortunate consequence of the way FPM have characterized the systematicity of 
thought is that any theory that accounts for understanding every sentence will account 
for systematicity trivially: If one can understand every sentence, one can understand 

                                                 
2 FPM’s position is fully laid out in the following articles: Fodor and Pylyshyn 1988; Fodor and 
McLaughlin 1990; Fodor 1997. Connectionism and the problem of systematicity (continued): Why 
Smolensky’s solution still doesn’t work. Cognition 62:109-19; McLaughlin 1992. Systematicity, 
conceptual truth, and evolution. In Christopher Hookway & Donald Peterson (eds.) Philosophy 
and the Cognitive Sciences. Royal Institute of Philosophy, Supplement no. 34, New York: 
Cambridge University Press, pp. 217-234; McLaughlin 1993. The connectionism/classicism battle 
to win souls. Philosophical Studies: 71: 163-190. 
3 This assumption of the Representational Theory of Thought is controversial. One might think 
that a person can have the thought that p without having the representation that p. See Cummins 
1996. Representations, Targets, and Attitudes. Cambridge, Mass.: MIT Press. 
4 We call these schemes "classical" in what follows (one could also call them "tarskian"). See 
Alfred Tarski 1936. The concept of truth in formalized languages. In Tarski 1956. Logic, 
Semantics, Metamathematics. Oxford: Oxford University Press, pp. 152-218; Tarski 1944. The 
semantic conception of truth. In Herbert Feigl and Wilfrid Sellars (eds.) (1949). Readings in 
Philosophical Analysis. New York: Appleton, pp. 52-84. 
5 Tarski, 1936. 
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every systematic variant of any given sentence. If the domain of sentences to be 
understood is finite, nonclassical schemes could be complete in the relevant sense, and 
hence account for systematicity. A look-up table, for instance, that uses arbitrary names 
to represent each sentence of the domain would do. 

A natural reply to this point would be to claim that only representational schemes 
employing something like classical combinatorics could be complete for an unbounded 
domain like the domain of thought-expressing sentences in a natural language. 
However, Smolensky, Legendre, and Miyata (hereafter SLM6) have proven that for every 
classical parser, i.e., a parser defined over classical representations, there exists a 
tensor-product network that is weakly (input-output) equivalent to the classical parser but 
does not employ classical representations.7 Thus, it appears that the classical 
explanation and the tensor-product explanation are on equal footing as explanations of 
the systematicity of thought. 

There are two philosophical responses to the SLM result that we want to surface briefly 
and put aside. The first, due to Schwarz,8 is that networks like that designed by SLM do 
not really have an unbounded competence. The second, suggested by FPM, and 
discussed briefly by Cummins,9 is that, while both parsers10 can account for the 
                                                 
6 SLM’s position is fully laid out in the following articles: Smolensky 1987. The constituent 
structure of connectionist mental states. Southern Journal of Philosophy Supplement 26:137-160; 
Smolensky 1990. Tensor product variable binding and the representation of symbolic structures 
in connectionist systems. Artificial Intelligence 46:159-216; Smolensky 1991. Connectionism, 
constituency and the language of thought. In Barry Loewer & Georges Rey (eds.) Meaning in 
Mind: Fodor and his Critics. Oxford: Blackwell, pp. 201-227; Smolensky 1995. Constituent 
structure and explanation in an integrated connectionist/symbolic cognitive architecture. In 
Cynthia Macdonald and Graham Macdonald (eds.) Connectionism: Debates on Psychological 
Explanation. Oxford: Blackwell; Smolensky, Legendre and Miyata 1992. Smolensky and 
Legendre (forthcoming), Architecture of the Mind/Brain: Neural computation, optimality, and 
universal grammar in cognitive science. Cambridge, Mass.: MIT Press. 
7 Tensor product encoding is a general-purpose technique for binding fillers to roles (object to 
properties/relations). An activation vector representing the binding of a filler f to a role R is 
obtained by taking the tensor product of the vectors representing R and f. The resulting vector 
can then be added to (superimposed on) others representing bindings of fillers to roles, yielding a 
single vector that represents the binding of many fillers to many roles. SLM use this technique to 
construct recursive representations of binary trees. Matrices effecting the vector operation for 
constructing a tree from its left child p and right child q (or for decomposing it) are then defined, 
making possible direct implementation in one layer of connection weights. 

This connectionist representation of trees enables massively parallel processing. Whereas in the 
traditional sequential implementation of LISP, symbol processing consists of a long sequence of 
car, cdr and cons operations, here we can compose together the corresponding sequence of 
Wcar, Wcdr, Wcons0, Wcons1 operations into a single matrix operation. Adding some minimal 
nonlinearity allows us to compose more complex operations incorporating the equivalent of 
conditional branching. (Smolensky, Legendre and Miyata, 1992). 

The matrices can then be straightforwardly combined to yield a single layer of connection weights 
that implement parse-dependent predicates and functions. 
8 Georg Schwarz 1992. Connectionism, Processing, Memory. Connection Science, 1, 207-26. 
9 Cummins 1996. Systematicity. The Journal of Philosophy 93:591-614. 
10 SLM do not in fact construct a parser. What they do is show how to construct networks 
effecting parse-dependent functions and predicates (e.g., active-passive) that correspond 
precisely to arbitrarily complex parse-dependent LISP functions/predicates. In the context of the 
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systematicity data, the SLM explanation is unprincipled because the tensor-product 
parser is handcrafted to achieve the effect, while the classical parser is not. We discuss 
these briefly in turn. 

Unbounded competences in connectionist networks. Georg Schwarz has argued that 
connectionist networks that are not simply implementations of classical architectures 
cannot have unbounded competences. According to Schwarz, we take an ordinary 
calculator to have an unbounded competence because it employs perfectly general 
numerical algorithms for addition, multiplication, subtraction and division. Consequently, 
its competence is limited only by time and memory.11 We can add more memory to the 
calculator, and let it run longer, without altering the algorithms it exploits. But, Schwarz 
argues, the same does not hold of a connectionist calculator, for the only way to add 
memory is to add more nodes, or to add precision to the nodes. Doing either of these, 
however, will require retraining the network, and hence amounts to programming a new 
system that, in effect, executes a different algorithm. The fact that processing and 
memory are fully integrated in connectionist networks blocks the standard idealization 
away from memory limitations that licenses attribution of unbounded competences to 
classical systems whose controlling algorithms remain unchanged with the addition or 
subtraction of memory. 

We believe this argument should be rejected for reasons given by Cummins.12 The 
culprit is the assumption that the function computed is a function from input to output 
rather than a function from input and initial state to output and final state. The input-to-
output relation exhibited by a classical parser, for example is a function of its stored 
knowledge. Change what the system knows and the same input will yield a different 
output. Because of this, the input-output relation is seldom a function. This is particularly 
obvious when we consider learning algorithms. These cannot be conceived as functions 
pairing inputs and outputs, for the whole point of a learning algorithm is to replace 
ineffective input-output pairings by better ones. By definition, learning algorithms remain 
constant over changes in input-to-output relations. 

We accept the principle that a different function computed implies a different algorithm 
executed. But the function computed by a connectionist system must be conceived as a 
function from an activation vector and point in weight space to another activation vector-
weight space pair. From this point of view, we do not build a new network when we 
change weights any more than we build a new rule based system when we change its 
stored knowledge. 

Connectionist data coverage is "unprincipled." The idea here is that classical 
representational schemes predict systematicity, whereas connectionist schemes at best 
accommodate it. 

To get a concrete sense of this objection, suppose a classical system generates a 
phrase marker for 'John loves Mary'. Since 'Mary loves John' has precisely the same 
phrase marker, except that 'John' and 'Mary' have exchanged positions, the system is 

                                                                                                                                                 
current discussion, this amounts to showing that classical representation is not required for 
systematic and productive capacities defined over the constituent structure of a sentence. 
11 It is also limited, ultimately, by wear and tear, but this raises no special problem for 
connectionists. 
12 Cummins, 1996b. Systematicity. This Journal. 



 5

bound to be able to parse 'Mary loves John' if it can parse 'John loves Mary': the 
grammatical structure is the same, and so are the lexical resources. 

 

By contrast, so the argument goes, a connectionist network could be trained to parse 
'John loves Mary' but not 'Mary loves John'. 

An obvious reply is that a classical system might be programmed to exhibit the very 
same incapacity. While this is certainly true, the resulting system would be obviously ad 
hoc. The incapacity does not appear ad hoc in the connectionist framework, however, 
since the representations of the sentences do not themselves have constituents 
corresponding to the relevant lexical items. It might seem, therefore, that there is no 
reason why the network would have to process the two representations in a similar way. 
They are simply different activation vectors, and hence there will be no special problem 
about a training set that simply declares the second parse unacceptable. Bias against a 
systematic variant of an acceptable sentence will present no learning problem different 
in principle from bias against any other unacceptable sentence, e.g., 'Loves Mary John'. 
A classical system, however, will give both parses if it gives either, unless some special 
rule is added to the grammar to block one or the other. There will be no rule or process 
in the deviant connectionist system that is special to this case. The same setting of 
weights that deals with every other sentence, whether acceptable or unacceptable, will 
deal with the deviation. There will, in short, be no principled distinction between the way 
it rejects 'Mary loves John' and the way it blocks 'Loves John Mary'. 

Here is a different but related way to see the alleged problem. Imagine a classical 
system that can parse 'John loves Mary' but cannot parse 'John despises Mary' because 
'despises' is not in its lexicon. It seems intuitively plausible to suppose that a simple 
learning algorithm will add 'despises' to the lexicon, and that this will suffice to yield the 
new parse. SLM’s result shows that for each of these classical parsers, there is a 
correlate, weakly equivalent, connectionist parser. It is silent, however, about the relation 
between these two correlate connectionist parsers. In particular, it is silent about 
whether the correlate connectionist parser that handles 'despises' is in any sense a 
natural extension of the one that does not. For all the SLM result shows, the 
connectionist parser that handles 'despises' would have to be built from scratch rather 
than as a simple modification of the one that does not. By itself, SLM’s result does not 
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show that the networks corresponding to the pre-and post-learning stages lie on any 
common connectionist learning trajectory. It shows only that any set of parses that can 
be captured by a classical system can be captured by a connectionist network. This at 
least suggests the possibility that the connectionist network does not parse the 
systematic variants of S because they are systematic variants of an acceptable 
sentence, but rather that it parses them simply because they are among the sentences 
in the target set defined by the classical system to be emulated. We have, in short, no 
reason to think that all the systematic variants of S are parsed in the same way. Rather, 
the prediction that the network will parse a systematic variant of S is derived simply from 
the facts (i) that the systematic variants of S are acceptable if S is, and (ii) that the 
network parses all the acceptable sentences.13 

We will come back to the merits (and demerits) of the objection that connectionist data 
coverage is unprincipled in a later section. But notice that, at this point, the debate has 
shifted from empirical considerations of what best covers the data to philosophical 
considerations of what constitutes a principled explanation. We propose, therefore, to 
reformulate the issue in the hope of finding a way of retaining its essentially empirical 
cast. 

II. The Issue Reformulated 
The fact that a system cognizes a domain will manifest itself in a variety of psychological 
effects. By an effect, we mean a nomic regularity in behavior (what Millikan14 calls a law 
in situ, i.e., a law that holds of a system in virtue of the special structure and organization 
of that system). For instance, the fact that humans cognize the color domain is 
manifested by the fact that humans make such and such discriminations (and fail to 
make others), by the fact that they will eat some foods and not others, etc.  

We take it as uncontroversial that some domains are cognized by grasping their 
underlying structure. For example, we can recognize the melody of 'Mary Had A Little 
Lamb' whether it is played by an orchestra or on a kazoo, regardless of what key it is 
played in and, within limits, regardless of tempo. Sensitivity to melody across differences 
in timbre, tempo and key suggests that the processing of melody is done by processing 
information about the structure and arrangement of notes in a composition. Word 
problem solving in algebra is another case where grasping the underlying structure of a 
domain is required for cognizing the domain. Students are better able to solve word 
                                                 
13 This problem is an instance of a more general problem we address elsewhere and will be 
pursued in further publications. See Pierre Poirier, Robert Cummins, James Blackmon; David 
Byrd; Martin Roth & Georg Schwarz. 1999. The epistemology of non-symbolic cognition: atomistic 
learning and forgetting. Tech. Report Phil99-3, University of California at Davis; see also Michael 
McCloskey and Neil J. Cohen 1989. Catastrophic Interference in Connectionist Networks: The 
Sequential Learning Problem. The Psychology of Learning and Motivation, 24, 109-165. 
Connectionist systems using distributed representation cannot learn atomically, that is, they 
cannot add single representations, such as the predicate 'despise', to their belief box or 
knowledge base without having to relearn everything they previously learned. Surely, this is not 
the way we acquire new representations in many domains. (But, for a possible solution, see 
James L. McClelland, Bruce L. McNaughton & Randall C. O’Reilly (1995). Why there are 
complementary learning systems in the hippocampus and the neocortex: Insights from the 
success and failures of connectionist models of learning and memory. Psychological Review 102: 
419-57). 
14 Ruth Millikan 1984. Language, Thought, and Other Biological Categories. Cambridge, Mass.: 
MIT Press. A Bradford Book. 
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problems involving distances, rates, and times when they see the problems as having 
the same structure as problems they are already familiar with. For example, students 
who can solve problems involving wind speeds but have difficulty solving problems 
involving current speeds are able to perform well on the latter when it is pointed out that 
current is analogous to wind.15 Only when students recognize an underlying structure 
they are familiar with do they seem to be able to give the correct answer (this suggests 
that sensitivity to structure is learned in some cases, or at least affected by prior 
knowledge). We also take it to be uncontroversial that some domains are cognized 
without grasping any significant underlying structure: knowing the capitals of twenty US 
states is no help in divining the capital of an unstudied state. Our ability to learn the state 
capitals does not depend on being sensitive to underlying structural features of state and 
their capitals. With respect to the previous distinction, we call an effect a systematicity 
effect if it is a psychological effect that implies sensitivity to the structure of the domain 
cognized.16 

Is it possible to draw any conclusions about the form of mental representation from the 
presence of systematicity effects? We think it is. Recall that our main methodological 
objective here is to keep the issue at an empirical level in the hope that it can be solved 
there. Our first conclusion proceeds from the observation that not all systematicity 
effects are created equal: some may be computed by the system and some may be 
incidental effects of whatever algorithm is being computed. We call the first type of 
systematicity effect “primary” and the second “incidental,” and we address the distinction 
and what it tells us about mental representation in the next section.17 Our second 
conclusion rests on a finer analysis of SLM’s tensor-product representations. Unlike 
classical representations that preserve information about the structure of represented 
elements by actually sharing that structure, tensor-product representations do not share 
structure with what they represent yet still manage to preserve structural information and 
make it available to processors. This allows a possible solution to a problem raised by 
Cummins18 against classical representations—namely that they cannot possibly share 
structure with every domain in which we find systematicity effects—but the price for that 
solution may be one FPM are not ready to pay. We address this issue in section four. 

                                                 
15 Denise Cummins 1992. Role of analogical reasoning in the induction of problem categories. 
Journal of Experimental Psychology: Learning, Memory, & Cognition 5:1103-1124. 
16 These examples are meant to represent the extreme cases. There are likely to be cognitive 
tasks that require grasping varying degrees of structure depending on the domain, so the 
distinction between structured and unstructured is not all or nothing. Also, some cognitive tasks 
will be hybrid cases, where some aspects require grasping structural information while others do 
not. Cognizing language appears to be an example, since mastery of the primitive lexicon is 
surely more like learning the state capitals than like mastering the syntax.  

One must also be careful not to confuse structure in the domain with structure in the way a 
problem or question is posed. When a teacher requires that I learn the capital of California, the 
structure of my answer is determined in part by the structure of the question itself. Similarly, one 
can imagine a state capital learning device that represents states as one place predicates such 
that only one capital could be matched with any state. In this case the structure of the answer is 
partly determined by the way states are represented in the system. 
17 The distinction between primary and incidental systematicity effects is introduced in Cummins, 
1996, This Journal, and also discussed in R. Cummins 2000. ‘How does it work?’ versus ‘What 
are the laws?’ Two conceptions of psychological explanation. In F.C. Keil et R.A. Wilson (eds.) 
Explanation and Cognition. Cambridge, Mass.: MIT Press, pp.xxx-xxx. 
18 Cummins, 1996. Systematicity. This Journal. 
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III. Primary vs. Incidental Systematicity Effects 
The distinction between primary and incidental effects captures the important fact that a 
system’s behavior results not only from the function it computes, but from a variety of 
other factors as well. Compare a system that multiplies by partial products with a system 
that computes products through successive addition. What the two systems have in 
common is the “multiplication effect,” i.e., the fact that they both produce the same 
products from the same arguments. They differ, however, in how long it takes them to 
compute the value for a given argument. In the case of the successive adder, the 
response time is roughly proportional to the size of the multiplier: computing ten times 
some number will take approximately twice as long as computing five times that number. 
The other system, in contrast, does not display such a linearity effect. Its response time 
is, roughly, a step function of the number of digits in the multiplier, indicating how many 
partial products need to be added in the end.  

 

 

The two systems have the same primary systematicity effects, since every argument pair 
leads to the same value in both systems: they are both multipliers. However, their 
incidental systematicity effects are different. For instance, the partial product multiplier 
will take approximately the same amount of time to multiply N by 10 as it will to multiply 
N by 99, whereas the successive addition multiplier will take roughly 10 times longer to 
multiply N by 10 as it will to multiply N by 99. In general, two systems that compute the 
same function using different algorithms will display different incidental effects, although 
they will be weakly equivalent in Pylyshyn’s sense.19 

One important source of incidental effects thus lies in the algorithm producing the 
primary effects. But systems that implement the same algorithm may exhibit different 
incidental effects. If the underlying hardware is sufficiently different, they may operate at 
                                                 
19 Pylyshyn 1984. Computation and Cognition. Cambridge, Mass.: MIT Press. A Bradford Book. 
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greatly different speeds, as is familiar to anyone who has run the same program on an 
Intel 486/50 MHz and on a Pentium III running at 750 MHz. A significant difference in 
response time between two systems, in other words, does not entail that they implement 
different algorithms; it may be a direct result of a difference at the implementation level. 
Hence, two systems that have identical primary effects may exhibit different incidental 
effects either because they compute different algorithms or because the identical 
algorithms they compute are implemented in different hardware.  

Incidental effects are not restricted to the complexity profiles of the algorithm or the 
constraints imposed by the implementing matter on the execution of the algorithm. 
Continuous operation will heat up the calculator, an incidental effect that is normally 
irrelevant to the system’s performance. Nonetheless, when things get too hot, the 
system will start malfunctioning and ultimately break down. As a consequence, two 
systems that differ in performance do not necessarily compute different functions; one of 
the systems may simply have been subject to extraneous factors such as overheating, 
fatigue, or ADD (attention deficit disorder). By the same token, the general physical 
makeup of a system also determines the extent to which environmental conditions will 
have an impact on the system’s ability to operate. The occurrence of a strong magnetic 
field, for example, will interfere with the operation of an electronic calculator but not with 
that of an abacus. In the case of single-purpose machines, this last kind of incidental 
effect is primarily relevant for explaining why a system fails to display its primary effects 
on certain occasions. But in the case of more complex systems, such effects have 
proven useful as an explanatory tool as well. Consider the fact that cognitive processing 
in the human brain is generally correlated with increased metabolic activity, a fact that 
has proved critical for the use of imaging technology (e.g., PET, fMRI) to study which 
cortical areas are involved in the processing of these tasks. Yet metabolic activity as 
such is not specific to the neural implementation of whatever computations are 
performed. 

It is evident that the effects of implementation details and environment complicate 
inferences from sameness of incidental effects to sameness of underlying functional 
architecture. However, in what follows, we will make use only if the inference from 
differences in incidental effects to differences in functional architecture in cases in which 
implementational and environmental influences are not at issue. 

Now SLM have proven that a connectionist tensor-product parser and the classical 
parser can exhibit the same primary effects (they are weakly equivalent, like our two 
multiplication algorithms). Any parse a classical parser computes can be computed by a 
corresponding connectionist parser. If systematicity effects are primary effects, then 
SLM have demonstrated, mathematically, that systematicity effects in language parsing 
can be accounted for without any appeal to classical representations. Hence, if the 
systematicity effects at issue are primary effects, then nothing can be concluded 
concerning whether the mental representations involved are classical or connectionist in 
form. As we saw, the consequence of that empirical deadlock has been to turn away 
from empirical considerations to philosophical issues concerning what constitutes a 
principled explanation. However, SLM’s tensor-product parser employs a different 
algorithm than the classical parser, and thus the two systems are bound to exhibit 
different incidental effects. If the systematicity effects observed are incidental, then, 
barring cosmic coincidence, at most one of the two parsers can account for them. In 
particular, the classical explanation can gain leverage over the SLM explanation if the 
form in which information is represented is important to explaining the effect. An 
incidental effect of using classical representations in language processing might, for 
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instance, involve priming. Since the lexical items and sentential structure of a recently 
processed sentence S may be easily accessible (they may still be in short-term memory, 
for instance), the recent processing of S may allow the system to process systematic 
variants of S faster than it would process sentences that are not systematic variants of 
S. An incidental effect of using connectionist representations is the flat temporal profile 
of parsing with a tensor-product parser. Since the latter will process all sentences, no 
matter how complex, in one step, it will process all of them in exactly the same amount 
of time. Should the empirical evidence show that subjects exhibit the kind of priming 
effect described above or a temporal profile different from the one we would expect from 
the use of a tensor-product parser, then, weak equivalence notwithstanding, FPM have a 
good argument in favor of their claim that classical representations better explain the 
systematicity of thought. Of course, should the evidence show that the incidental effects 
are those one would expect from an SLM-type parser, then it would seem that classical 
representations are not the source of the systematicity of thought. 

FPM and their supporters cite no evidence from incidental systematicity effects, nor do 
their opponents. It seems likely that there are relevant effects reported in the literature 
on language processing, but they have not, to our knowledge, been brought to bear on 
this issue.20 It should be emphasized, however, that systematicity effects of the sort FPM 
had in mind are clearly not incidental but primary21 : they do not argue from evidence 
that processing Mary loves John makes it easier to process John loves Mary to the 
conclusion that mental representation is classical. They simply argue from the availability 
of a given thought (sentence understood) to the possibility of its systematic variants. 

IV. Representational Pluralism and Structural Encodings 
The inference from systematicity effects to classical representations involves three 
steps:  

1) The observation of systematicity effects. 

2) An inference from the presence of these effects to the conclusion that mental 
representations must preserve and carry information about the structure of the 
domain. 

3) An inference from that conclusion to the further conclusion that the information 
about structure must be carried by classical representations. 

Most will readily agree that systematicity effects can be observed. We noted in the 
previous section that care should be taken to distinguish primary from incidental 
systematicity effects since only the latter will allow conclusions to be drawn about the 
nature of representations. Step 2 is also uncontroversial. In unbounded domains (see 
above), how else can these effects be produced? It is step three of the inference, from 
the preservation of structural information to the necessary presence of classical 
representations, that we wish to address here. 

                                                 
20 We are in the process of searching the literature for such evidence. Meanwhile, the fact that the 
SLM parser accomplishes all parses in a single step, regardless of the complexity of the sentence 
parsed, is surely suggestive. 
21 This is put misleadingly in Cummins, 1996, This Journal, p. 603. The point is that proponents of 
the systematicity argument are thinking of systematicity effects as primary when they should be 
thinking of them as incidental. 
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Sensitivity to the structure of a domain is best explained by a scheme of mental 
representation that carries information about the structure of that domain. One such 
scheme involves structural representations of the domain in question. A representation 
R is a structural representation of its target just in case R and its target share structure. 
Scale models, photographs, and maps are typical examples of structural 
representations. As Cummins22 points out, it is natural to explain the systematicity 
effects we find in language, vision, and audition by positing structural representations of 
each of the respective domains. The obvious virtue of structural representation is that 
structural transformations and permutations of the representations yield representations 
of the systematic variants of the corresponding targets in the cognized domain. For 
every operation defined over elements in a domain there can be a corresponding 
operation defined over elements in the representational scheme. Thus, the 
representation of an item in the domain can be used to construct a representation of its 
systematic variants. The sensitivity to structure that is required to cognize certain 
domains is accomplished by actually having the structure of the domain in the 
representations. We are now in a position to appreciate that FPM’s classical 
representations are a case of a scheme of structural representation for the linguistic 
domain. The idea is that, in order to be sensitive to the combinatorial syntax and 
associated semantics of a language, there must be a system of internal representations 
that has the same (or corresponding) syntactic and semantic features.  

This way of explaining systematicity effects, however, limits classical schemes to the 
explanation of systematicity effects exhibited by the cognition of language-like domains, 
since these are the only domains that classical schemes can structurally represent. This 
leaves the systematicity effects we find in other differently structured domains to be 
explained by appeal to non-classical schemes. Since we apparently grasp the underlying 
structure of domains structurally distinct from language, we would require structurally 
distinct representational schemes to cope with each of them in the same way that 
classical schemes are supposed to facilitate coping with language. Apparently, structural 
representation comes at the price of (perhaps massive) representational pluralism. 

The problem of representational pluralism was first noticed by Cummins.23 Roughly, 
representational pluralism is the idea that for every differently structured domain for 
which we show a systematicity effect, we employ a scheme of mental representation that 
shares structure with that domain. Thus, if we exhibit systematicity effects in cognizing 
three differently structured domains, we employ at least three differently structured 
schemes of mental representation. FPM can make a plausible argument from 
systematicity effects in language processing to the conclusion that some mental 
representation is classical. However, there are other systematicity effects, such as those 
found in vision and audition, that cannot be accounted for by structural representations if 
all mental representation is classical, since the structure of the domains in language, 
audition, and vision are different. Since the inference from systematicity effects in 
domains other than language to nonclassical, structural representations is on par with 
the inference from systematicity effects in language to classical representations, the 
systematicities in vision and audition are good evidence for some nonclassical, structural 
representations. Thus, if the FPM inference is sound, it constitutes a good argument for 
representational pluralism. The only way FPM can retain the idea that mental 
representation is monistic is by allowing that some systematicity effects can be 

                                                 
22 Cummins, 1996. Systematicity. This Journal. 
23 Cummins, 1996. Systematicity. This Journal. 
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adequately explained without recourse to a corresponding scheme of structural 
representations. Some systematicity will have to be explained by appeal to mere 
encodings. An encoding of a domain D is a mapping of the members of D onto the 
representations in a scheme R whose members do not share the structure of their 
images in D. Classical representations structurally represent linguistic structure, but they 
only encode the structure of music. By allowing some encoding, however, friends of 
FPM would forfeit the objection that connectionist data coverage is unprincipled, since 
encoding, on their view, forces us to be unprincipled somewhere. So it seems that either 
the objection must go, or FPM are forced to accept representational pluralism. 

The SLM parser shows, however, that representational monism is compatible with an 
adequate account of primary systematicity effects. To see this clearly, we need a 
taxonomy of representational schemes that 1) makes evident what property holds of 
structural representations in virtue of which they account for primary systematicity 
effects, and 2) identifies an alternative sort of scheme that can be seen to have this 
critical property.  

Our taxonomy relies on two distinctions. The first distinction has to do with whether a 
representational scheme represents its domain by making available representations that 
share structure with the items of the domain represented. Shared structure involves two 
things. First, the representations have constituents that represent the constituents of the 
domain. Second, these representational constituents are structurally related in a way 
that represents the ways in which the constituents of the content are structurally related. 
We call any scheme in which representations represent items in its target domain in 
virtue of sharing structure with the things they represent a structural representational 
scheme for that domain. We call schemes that represent a domain, but not in virtue of 
shared structure, an encoding of the domain. So the first distinction separates entities 
that represent in virtue of shared structure, that is, structural representations, from those 
that represent by some other means, that is, encodings. 

The second distinction we need requires the notion of a recovery function. A recovery 
function is a function from a representational scheme to a domain. Intuitively, these 
functions allow one to recover contents from representational schemes. Recovery 
functions are not necessarily employed by cognitive systems; they may remain purely 
theoretical constructs by which we may interpret representational schemes. We 
distinguish between recovery functions that are systematic and those that are not. A 
recovery function is systematic if there is a general/productive algorithm for mapping the 
scheme to its contents. In such a case, the function does not need to be defined by a list 
of pairs each containing an element of the scheme and a content. If the recovery 
function is systematic, then the representational scheme is structural. If the recovery 
function is not systematic, then the representational scheme is pure or arbitrary. 

 

 Systematic Recovery 
Function 

No Systematic Recovery 
Function 

Do not share 
structure Structural Encodings Pure Encodings 

Share structure Structural Representations  
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This taxonomy allows us to distinguish three categories of representational entities: 
structural representations, structural encodings, and pure encodings. Schemes that 
belong to either of the first two categories are such that the information about the 
structure of the domain is systematically recoverable. This is relevant because if 
structure can be recovered systematically from a scheme, then the scheme has 
preserved information about the structure of the domain. The possibility of systematic 
recovery implies the preservation of structure. 

One obvious way of preserving structure is for the representational scheme to simply 
share the structure of the domain. This is what structural representations do. But this is 
not the only way. Structural encodings preserve structure without sharing it. Gödel 
numbering and tensor product schemes are both examples of structural encodings. In 
the Gödel scheme for encoding sentences, words are assigned natural numbers while 
their positions in the sentence are assigned prime numbers in ascending order. A 
number m in position n yields the number nm. We can say that nm stands for the word 
numbered m standing in the place numbered n. This number is uniquely factorable into 
n, m times. The Gödel string of a sentence is determined by multiplying all these 
uniquely factorable numbers together. This yields a number, expressed by a Gödel 
string, which is uniquely factorable into a list of numbers. An example of a Gödel string is 
'1,093,500' which factors into 22 x 37 x 53 which breaks down further into a list of 2’s, 3’s, 
and 5’s. The values of these numbers have been assigned to places and the number of 
occurrences of any number has been assigned to words. We may suppose the string 
encodes the sentence 'Mary loves John' where 'Mary', 'loves', and 'John' are assigned 
the numbers 2, 7, and 3, respectively. The Gödel string itself does not share structure 
with its content; however, this structure is systematically recoverable and thus the 
representation has preserved information about the structure of the sentence. SLM’s 
tensor-product representations have the same property. The tensor-product activation 
patterns themselves do not share structure with their contents, but the existence of 
recoverability functions for such schemes entails that such schemes preserve structure. 

Structural encodings permit recovery but do not share structure with their domains. Pure 
encodings do not permit systematic recovery and so do not preserve structure. If, for 
example, we were to take the names of the state capitals as encodings of the names of 
the states we would be employing a pure encoding scheme, for there is no systematic 
way by which the names of the states could be recovered from the names of the 
capitals.24 In this case, a look-up table is required, and no information about structure is 
preserved. 

Structural encodings, as opposed to pure encodings, are adequate to account for 
primary systematicity effects because, under such schemes, information about structure 
is preserved and that is all that is required. This is, in fact, the property which holds of 
structural encodings and structural representations in virtue of which it is possible to 
construct architectures using either one that exhibit systematicity effects. To take our 
previous example, any system capable of processing 1,093,500 (the Gödel string for 
'Mary loves John') is also capable of processing 437,400 (the Gödel string for 'John 
loves Mary'). The parallel with the previous symmetric phrase markers is perfect. The 
tensor product scheme employed by SLM is a structural encoding, not a pure encoding 

                                                 
24 Another way to see the same point: Given a new capital name, there is no way to infer what 
state name it corresponds to. 
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as FPM seem to assume, and this is why SLM are able to prove their otherwise puzzling 
result. It is only when cognitive systems employ such structure-preserving schemes that 
they can be causally sensitive to the structure of the domain cognized, and thus exhibit 
systematicity effects. Systems employing pure encodings cannot exhibit such effects 
because there is no common form or structure to which the system could be causally 
sensitive. 

Once we see that structural encoding is adequate to account for systematicity effects—
at least the primary ones—we are free to cleave to representational monism. Since a 
scheme like that employed by SLM need not share structure with the domains it 
represents in order to account for primary systematicity effects, such a scheme could, in 
principle, account for primary systematicity effects in a variety of structurally distinct 
domains. The same point can be made about classical representation: since it can be 
used to structurally encode domains such as music that are structurally unlike language, 
a classical scheme could account for primary systematicity effects in non-linguistic 
domains. Since classical and nonclassical structural encodings are evidently on a par in 
this respect, we conclude again that there is no sound argument from primary 
systematicity effects to classical representation. There is, of course, a sound argument 
from systematicity effects against pure encoding, but that should come as no surprise. 
What is important to systematicity is preserving information about the relevant structure 
of the target domain. It does not much matter how that information is encoded, provided 
an architecture exists that is capable of exploiting the information in that encoding. SLM 
demonstrate that connectionist networks can exploit such information as encoded in 
tensor-product activation vector schemes. 

The staunch defender of classical representations may object at this point that there still 
is a methodological virtue in accepting classical representations-plus-pluralism over 
encodings-plus-monism because it is the lawfulness of systematicity that needs to be 
explained and encodings just do not account for it. But it not clear that they do not. We 
agree that with pure encodings there could be minds that encode Mary loves John 
without encoding John loves Mary, since the ability to encode the former does not imply 
the ability to encode the latter. With structural encodings such as the tensor product 
scheme employed by SLM, however, matters are different. Since the encodings are 
generated recursively from the filler and role vectors, the ability to encode 'Mary loves 
John' does imply the ability to encode 'John loves Mary', since the two encodings employ 
the same filler and role vectors. The only difference between them is how the vectors get 
multiplied and added to create the respective tensor-product encodings of the two 
sentences.25 

 

                                                 
25 Versions of this article were presented before the Society for Philosophy and Psychology (June 
1999), CogSci99 (July 1999), and the APA (April 2000) and at various universities. We thank 
audiences and commentators for their helpful remarks. Research was funded by the National 
Science Foundation, Grant # 9976739. 


